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Abstract—The effects of temperature-dependent viscosity and coefficient of thermal expansion on the
stability of laminar, natural convective boundary-layer flow of a liquid along an isothermal, vertical surface
are studied employing linear stability theory for Prandtl numbers 7-10. Numerical solutions indicate that
the temperature-dependent viscosity stabilizes the flow along a heated wall and destabilizes it along a cooled
wall. The temperature-dependent coefficient of thermal expansion initially stabilizes the flow for a heated
wall but farther downstream it destabilizes the flow. Flow visualization studies in water with an isothermal,
vertical copper pipe (outside diameter 41.3mm and length 1m) for various combinations of wall and
ambient temperatures in the range 5-35°C support the numerical predictions.

INTRODUCTION

IN THE theoretical analysis of the natural convective
flow along an isothermal, vertical surface, it is
customary to assume that the properties of the fluid
are constant, except for density in the buoyancy force
term of the momentum equation where it is assumed
to vary linearly with temperature (Boussinesq
approximations). This is true only if the temperature
difference between the wall and the ambient medium is
small. For example, for water at 15°C and 1atm,
Boussinesq approximations are strictly valid only
when temperature difference is less than 1.25°C [1]. At
larger temperature differences, the effects of variable
properties should be included in the analysis. This is
especially true of viscosity and coefficient of thermal
expansion in the case of liquids [2—4]. The effects of
variable properties on the laminar, natural convective
flow along an isothermal, vertical surface have been
extensively studied in the past and a literature review
can be found in ref. [4].

Near the leading edge of the vertical surface the
natural convective flow is always laminar. Away from
the leading edge, the laminar flow becomes unstabie
due to ever-present disturbances in the system. The
thermal transport is different in laminar, transition
and turbulent flow regimes. Hence the knowledge of
the nature of the flow is important for estimating the
thermal transport. The transition from laminar to
turbulent regime depends on the stability
characteristics of the flow. Stability and transition to
turbulence of the natural convective flow along a
vertical surface have been extensively studied by many
investigators employing Boussinesq approximations.
Literature reviews can be found in refs. [4, 5].

1 To whom correspondence should be addressed.

In the forced convective flow of a liquid over a flat
plate, the variation of viscosity with temperature
destabilizes the flow for a cooled wall, and stabilizes
the flow for a heated wall [6,7]. For the natural
convective boundary-layer flow along an isothermally
heated, vertical flat plate, Piau [2] has shown that the
variation of viscosity may have a stabilizing effect for a
heated wall. Recently, Higgins and Gebhart [8,9]
studied the stability of buoyancy-induced flows in cold
water along an isothermal, vertical flat plate. They
found that the Boussinesq approximation over-
predicts the buoyancy force for up flows with the
resulting neutral stability curves lying to the left of the
true ones. The opposite remarks are true for down
flows.

In this paper, the effects of variations of viscosity
and coefficient of thermal expansion with temperature
on the stability of laminar, natural convective
boundary-layer flow of a liquid along an isothermal,
vertical flat plate are studied numerically employing
linear stability theory for Prandtl numbers 7-10. Both
cooled and heated walls are examined. The results for
the onset of instability and the transition to turbulent
flow obtained from flow visualization studies in water
with an isothermal, vertical, circular cylinder for
various combinations of wall and ambient water
temperatures in the range 5-35°C are also presented.

THEORETICAL ANALYSIS

Governing equations

The coordinate system is shown in Fig. 1. The
quiescent ambient liquid and the surface of the vertical
flat plate are at constant temperatures t, and t,
respectively. The dynamic viscosity u and density p are
assumed to be functions of temperature alone. The
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| NOMENCLATURE
A disturbance amplification factor, B real frequency, disturbance equations
i equation (24) y parameter for the variation of
j A., Ag disturbance amplitudes, equation (24) viscosity with temperature,
‘ B,,B,,B; complex constants, equations (19) equation (7)
and (20) 14 boundary-layer thickness
i ¢ dimensionless wave velocity, f/o g parameter for the variation of
! <, specific heat at constant pressure coefficient of thermal expansion with
C,.C,,C; real constants, equations (17) temperature, equation (10)
} and (18) n similarity variable
F similarity streamfunction 0 dimensionless temperature,
‘ g acceleration due to gravity (E—t )/ (to—ts)
G 4[Gr,/411* A constant, equation (17)
| Gr, Grashof number, g(p, — p.,)x3/(pov?) U dynamic viscosity
i \/—1 v kinematic viscosity
k thermal conductivity P density \}
Pr Prandtl number, y.c,/k ¢ velocity disturbance amplitude !
\ q constant, equation (17) function
\ Ra, Rayleigh number, Gr, Pr Y streamfunction.
‘ s temperature disturbance amplitude
J function Subscripts
\ t temperature f “film’ condition |
| u,v velocity components in x and y 0 at the wall
; directions . o* ambient condition. i
‘ X,y Cartesian coordinates. ‘
Greek symbols Superscripts j
o complex wave number N mean value t
B coefficient of thermal expansion, main dimensional quantity ‘
flow equations ! differentiation with respect to 7. |
S
thermal conductivity k and specific heat ¢, are 0" +3PrF0' =0 2)
assumed to be constant. For moderate temperature , ,
differences (~ 10-50°C in the case of water at 1 atm, FlO)=F0)=00)~1=F(x)=0=)=0 (3)
for example) between the wall and the ambient liquid,  where
the density can be assumed to be constant in terms s 1/a ‘
other than the buoyancy force term of the governing ¢, — (P = po)x” G= 4[erjl , = Gy (4)
equations [4]. The dissipation terms due to pressure ) povi 4 4x
and viscosity can be also neglected. -
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F1G. 1. Coordinate system.

surface and the ambient liquid, the ratio u/u; can be
approximated by a linearized Taylor series expansion
about a reference temperature. Taking the reference
temperature to be the film temperature, the linearized
approximation can be written as [1,3,4]

Ldul -
Ll (t—t) = 1+y{0-%) (7
Mg He dtf
where
1du
o= — e (0 =1 ). 8
7t 1 d[ r( 0 too) ( )
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For linear variation of viscosity with temperature

- (ﬂﬁ/ﬂm_l)
" ol + 1)

For moderate temperature differences between the
surface and the ambient liquid, py/p & 1. When the
density is assumed to vary parabolically with
temperature, the dimensionless buoyancy force term
becomes (4]

©

LoD b0 s ggi-) (10
Pw—Po P
where
—.Bo_ﬁoo
afwﬁo'*'ﬁm. "

The viscosity of a liquid decreases with an increase
in temperature. Hence, for the linear variation of
viscosity with temperature, y, varies from +2 to —2,
positive for a cooled wall and negative for a heated
one. For most liquids, and for water when the
temperatures are higher than 4°C, g varies from + 1 to
~ 1, positive for up flows (heated walls} and negative
for down flows {cooled walls). Boussinesq
approximations correspond to y, = g = 0.

The disturbance equations are obtained by
employing the assumptions involved in linear stability
theory, such as small disturbances, parallel flow
approximation, and are given in detail in ref. [4].
Assuming the disturbances to be two-dimensional
travelling waves and non-dimensionalizing the
variables, one obtains

(" —202¢" +a*@][1 + 70 ~D)]
= aG(F ~c)(¢" —a’d) — F"'¢] ~2y,0' (¢ —a?¢)
—7,0"(¢" +a? ) ~2e6's — [14+ 250 -9 (12)
§" —a?s = iaGPr[(F' —c)s — ¢'8"]
9(0) = ¢'(0) = 5(0) = P(oc) = ¢'(x) = 5(x) = 0

(13)

(14)
where
_ 4x . _ 435)( _ B
6_6’ a=ad, f= VG2 c—; (15)
4dx
&) G stn) Tzt (16)

Numerical method

The numerical method employed to solve the main
flow and the disturbance equations was the same as
the one given by Hieber and Gebhart [10]. At large 4,
the solutions to the base flow equations (1)-(3) are
given by

F=C +Cye3m

Cyq
+
[27C;Pr3(iPr—1)]

g = Cze‘SCIPrq

e“SCXPrr.v

(17)

(18)
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where A = 1—~(y;/2),g = 1l —¢,and C, C, and C; are
real constants.

The equations (1}-(3) were integrated numerically
across the boundary layer from the outer edge to the
wall, assuming some values for C,, C, and C;. The
boundary conditions were checked at » =0. The
shooting method was employed to correct the values
of C,,C, and C; so that the boundary conditions were
satisfied at n = 0. The solution was assumed to have
converged when the relative errors in C;, C; and Cj,
and the absolute errors in the boundary conditions at
n = 0 were less than 1x 1078,

The system of equations (12)-(14) is a sixth-order
eigenvalue problem, linear in the disturbance
amplitudes ¢ and s. The solutions to the equations
(12)-(14) can be written as a linear combination of six
independent integrals as [10]

$(n) = By, + By, + By,
5(n7) = Bysy +B,s, + Bis,

(19)
(20)

where B;, B, and B, are complex constants. B, was
taken as 1.0, thus fixing the disturbance level
arbitrarily. The integrals can be obtained from the
solution of disturbance equations (12)-(14) at large
values of 5. They are given by

Pp=e"", Py=e7" 2y
o, - dlza/e
P e~ et —ad))
(22)
s = iaPrGo, e
' 2 —(3C, Pr+w)?]
wPrGo e "
- x s =g 7 23
h BT A-6C, Py T E @
where
iacG PM?
oy = +[tx2——z~:| , Oy = +[oc2—l'acPrG]”2.

For given values of G and §, a complex value for o
was assumed. Starting with equations (19} and (20) as
the initial values, the equations (12)}-{14) were
integrated across the boundary layer using a fourth-
order Runge-Kutta method. B, and B; were
determined by satisfying two of the three boundary
conditions at #=0. The remaining boundary
condition at = 0 is satisfied only if the assumed value
of « is the eigenvalue of the equations (12)~(14). The
value of « which satisfied the third boundary condition
at y =0 within a value of 1x107% was found
iteratively.

RESULTS AND DISCUSSION

Equations (1)}-(3) and (12)-(14) were solved
numerically and the stability plane was obtained for
various values of Pr, y;and ¢. The numerical solutions
agreed very well with those given by Nachtsheim [11]
for Pr=10.733, and Pr=6.7 when v, = =0. The
details can be found in ref. [4].
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FiG. 2. The effects of y; on the base flow temperature and
velocity profiles for Pr = 10.

The effects of variation of viscosity with temperature
The effects of temperature-dependent viscosity on
the base flow temperature and velocity profiles for
Pr = 10 are shown in Fig. 2 in terms of the parameter
7, As indicated earlier, for liquids, a positive value of y;
denotes a cooled wall and a negative value, a heated
wall. For a positive value of y,, the liquid near the wall
is more viscous than that away from the wall
Numerical solutions, similar to the ones given in ref.
[31, show that for a positive value of y;, the velocity
boundary layer is smaller and the temperature
boundary layer is slightly larger. The position of
maximum velocity is farther from the wall and the
total mass flow rate is lower. The larger the positive
value of y,, the more pronounced are the effects. The
opposite trends are true for a negative value of y;.
The effects of temperature-dependent viscosity on
the stability of the laminar boundary-layer flow of a
liquid with Pr= 10 are shown in Figs. 3-5. The
stability plane shown in Fig. 3 corresponds to that of
Boussinesq approximations (y; = ¢ = 0). The stability
plane for a cooled wall (y, is positive) is shown in Fig. 4
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FiG. 3. The stability plane for Pr = 10 and y; = 0.0.
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F1G. 4. The stability plane for Pr = 10 and » = 1.6.

and that for a heated wall {y, is negative) is shown in
Fig. 5. The stability of laminar flow depends on the
amplification or decay of disturbance present in the
system. If the disturbances amplify, as they move
downstream, the flow is said to be unstable; if they
decay, the flow is said to be stable. The rate of
amplification {or decay) of a disturbance depends on
the variation of «; with G. At the neutral line, the rate
of amplification is zero. If A, is the amplitude of a
disturbance on the neutral curve (G=G), its
amplitude Ag at a location G is given by [10]
-{lAE = exp(4) (24)

C

1 G
= —gj‘c afdG.

<

where

Contours of A were obtained by following various
constant frequency paths and evaluating the above
integral along these paths. By comparing the neutral
stability curves (A4 = 0) in Figs. 3-5, it can be clearly
seen that the laminar flow becomes unstable at a lower
value of G for a cooled wall than for a heated wall.
The transition from laminar into turbulent flow
depends on the growth of the disturbances as they
move downstream. It is seen that the amplification of
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F1G. 5. The stability plane for Pr = 10 and y;= — 1L6.
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FIG. 6. The effects of & on the base flow temperature and
velocity profiles for Pr = 10.

disturbances is faster for a positive value of y; than fora
negative value (compare the contours of 4 =4, for
example). The frequency filtering mechanism is also
more pronounced for a positive value. The larger the
positive value, the more pronounced are the effects.
Hence, as in forced convection, for liquids, the flow is
more unstable for a cooled wall than for a heated wall
with the same film temperature. As the disturbances
amplify faster for a cooled wall, the transition to
turbulent flow may occur earlier.

The effects of variation of coefficient of thermal
expansion with temperature

The effects of temperature-dependent coefficient of
thermal expansion on the base flow temperature and
velocity profiles for Pr = 10 are shown in Fig. 6 in
terms of the parameter ¢;. As indicated earlier, for most
liquids, and for water when the temperatures are
higher than 4°C, a negative value of ¢; denotes a cooled
wall (down flow) and a positive value denotes a heated
wall (up flow). The dimensionless buoyancy force at
any point inside the thermal boundary layer is larger
for a negative value of ¢ than for a positive value [see
equation (10)]. Numerical solutions indicate that fora
negative value of g, the total mass flow rate and the
value of maximum velocity are higher, and the thermal
boundary-layer thickness is smaller. The larger the
absolute value of ¢, the more pronounced are the
effects.

Figures 7 and 8 show the stability planes for g = 1.0
and —1.0, respectively for Pr = 10. From Figs. 3, 7
and 8, it can be seen that the neutral stability curve for
a negative value of g lies left of the one for a positive
value. Hence, the critical Grashof number for the
onset of instability is lower for down flows than that
for up flows. These trends agree with those of Higgins
and Gebhart [8,9]. But, the amplification of
disturbances, as they move downstream, is faster for a
positive value of ¢ than for a negative value (compare
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F1G. 7. The stability plane for Pr = 10 and ¢ = 1.0.

the contours of A = 6, for example). Hence, for most
liquids, the temperature-dependent coefficient of
thermal expansion initially stabilizes the flow for a
heated wall but farther downstream it destabilizes the
flow.

The effects of both the variation of viscosity and the
coefficient of thermal expansion with temperature

For many liquids, in particular for water and
aqueous solutions, both the viscosity and the
coefficient of thermal expansion are strong functions
of temperature. Hence it is important to consider the
effects of both y; and ¢ on the stability of laminar,
natural convective flow along an isothermal, vertical
flat plate.

Numerical solutions were obtained for typical cases
of natural convective flow from an isothermal, vertical
flat plate in water for t; = 10°C with |t, —t | = 10°C,
and for t; = 20°C with |t, —t,,| = 20°C. The Prandtl
numbers for these cases are 9.34 and 7.0, respectively.
For the cooled wall, the approximate values of y;and ¢
are0.29, —0.81and 0.50, —0.55, respectively. For the
heated wall, the values are —0.29, 0.81 and —0.50,
0.55, respectively. The case of y; = & = 0 corresponds
to Boussinesq approximations. The base flow
temperature and velocity profiles are shown in Fig. 9
for Pr = 7.0. It can be seen that the effects of y; and ¢,
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F1G. 8. The stability plane for Pr = 10 and g = —1.0.
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F1G. 9. Base flow temperature and velocity profiles for
water, when t; = 20°C and |1, —1t, | = 20°C.

normally oppose each other. For the cooled wall, the
maximum velocity is larger and the boundary-layer
thickness is smaller. For the heated wall, the
maximum velocity is lower and the boundary-layer
thickness is larger. The mass flow rate was found to be
slightly larger for the cooled wall.

The effects of both y, and ¢ on the stability of the
laminar flow are shown in Figs. 10 and 11. For the
cooled wall, the critical Grashof number for the onset
of instability is lower and the rate of amplification of
disturbance is faster for the variable property case
than for the Boussinesq approximations. For the
heated wall, the effect of variable properties is to
stabilize the flow initially (compare the neutral
stability curves in Figs. 10 and 11), but the
disturbances amplify faster at downstream locations
(compare the contours of 4 =6 in Fig. 10, for
example). Although in Fig. 11, the contour of 4 = 4
for the heated wall is to the left of that for the
Boussinesq approximations; farther downstream, the
disturbance may amplify faster for the case of variable
property (as was the case in Fig. 10). The larger the
absolute values of y; and ¢, the more pronounced are
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F1G. 10. The effects of both y; and & on the stability of
laminar flow of water, when t; = 10°C and |, —t| = 10°C.
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Fi1G. 11. The effects of both 5 and & on the stability of
laminar flow of water, when = 20°C and Jt, —1,,| = 20°C.

their effects on the stability of the laminar flow. Hence,
the laminar, natural convective flow of a liquid along
an isothermal, vertical wall is more unstable for larger
temperature differences between the wall and the
ambient medium.

Flow visualization studies

Flow visualization experiments were conducted in
water with an isothermal, vertical, circular cylinder for
various combinations of wall and ambient
temperatures in the range 5-35°C. The purpose of
these experiments was to study qualitatively the effects
of variable properties on the onset of instability and
the transition to turbulence of the natural convective
flow in water. The experimental apparatus shown in
Fig. 12 is described in detail in ref. [4]. The test
section, a [-m-long copper pipe with an outside
diameter of 41.3 mm and a wall thickness of 3 mm, was
in the center of a large insulated water tank (0.6 m
long, 0.6 m wide and 1.6 m high). The test section was
cooled or heated to the desired temperature by
circulating  water at a  high flow rate
(~1x1072m*s™*) from a constant temperature
bath. The surface temperature of the copper pipe was
taken as the average of the inlet and the outlet water
temperatures. The water tank had plexiglass windows
for flow visualization. Flow visualization techniques
used were the shadowgraph and the dye injection
methods.

The tank was filled with deaerated plain tap water
and was allowed to equilibrate for about 1-2h. The
cooling or heating water from the constant
temperature bath was then circulated through the test
section. About 15 min after starting the experiment,
the locations of the onset of instability and the
transition to turbulent flow were closely observed for
the naturally occurring disturbances. The onset of
instability was taken as the nearest point from the
leading edge where small oscillations on the dye were
observed. The disturbances, as they moved
downstream, amplified with time and distance, and
became vortices. Soon the vortices broke down into
turbulent flow. The point of transition to turbulent
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F1G. 12. Schematic diagram of the experimental apparatus.

flow was taken as the nearest point from the leading
edge below which the flow was always turbulent. The
turbulent flow exhibited the nature of complete
disorder and mixing. The experiment was repeated for
various combinations of wall and ambient
temperatures in the range 5-35°C.

Figure 13 shows a typical shadowgraph when
to = 5.0°C and t, = 28.0. For this case, the onset of
instability and the transition to turbulent flow were
approximately 16.0 and 57.5 cm respectively from the
leading edge. Figure 14 shows the critical values of
Rayleigh number for the onset of instability and the
transition to turbulent flow for various temperature
differences between the wall and the ambient water.
The results for a vertical, circular cylinder can be
assumed to be that of a flat plate if (d/x)(Ra,)!* > M
where d is the diameter, x is the distance from the
leading edge to the point of measurement and M is a
constant. The validity of this assumption has been
discussed by Fujii et al. [12]. It is to be noted that the
value of M for the experiments conducted in the
present study was within that of ref. [12]. The critical
values of Ra, for the transition to turbulent flow also
agreed well with those of ref. [12]. The critical values
of Ra, for the transition to turbulent flow were found
to be independent of the Prandtl number for
temperature range investigated.

The experimentally obtained critical values Ra, for
the onset of instability are 3-4 orders of magnitude
higher than those obtained numerically. This is due to
the fact that the naturally occurring disturbance could
be detected experimentally only when its amplitude
was finite whereas the analysis based on linear stability
theory assumed an infinitesimal value. For larger
temperature differences between the wall and the
ambient medium, the critical values of Ra, for the
onset of instability and transition to turbulent flow
obtained experimentally are lower for both cooled and

heated walls. It is to be noted that the linear stability
analysis predicted these trends to be true at locations
farther away from the point of onset of instability (see
Fig. 10, for example).

Onset of instability

Transition to turbulence

F1G. 13. Photograph of shadowgraph flow visualization in
water for ¢, = 50°C and ¢, = 28.0°C.
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CONCLUSIONS

The effects of the variations of viscosity and
coefficient of thermal expansion with temperature
were examined for the laminar, natural convective
boundary-layer flow of a liquid along an isothermal,
vertical flat plate. Numerical results show that the
temperature-dependent viscosity stabilizes the flow for
a heated wall and destabilizes it for a cooled wall. The
frequency filtering mechanism is more pronounced for
a cooled wall. The variation of coefficient of thermal
expansion with temperature lowers the critical
Grashof number for the onset of instability for a
cooled wall but the disturbance growth rate is faster
for a heated wall. Hence, the temperature-dependent
coefficient of thermal expansion initially stabilizes the
flow for a heated wall, but farther downstream it
destabilizes the flow. The trends of experimentally
obtained critical values of Grashof number for the
onset of instability and the transition to turbulent flow
support the numerical predictions.
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LES EFFETS DE LA VISCOSITE ET DU COEFFICIENT DE DILATATION THERMIQUE
VARIABLES SUR LA STABILITE DE LA CONVECTION NATURELLE LAMINAIRE LE
LONG D’UNE SURFACE ISOTHERME ET VERTICALE

Résumé—Les effets de la viscosité et du coefficient de dilatation thermique dépendant tous deux de la
température sur la stabilité de I’écoulement de couche limite en convection naturelle, laminaire, d’un liquide
le long d’une surface isotherme et verticale sont étudiés en utilisant la théorie de la stabilité linéaire pour
des nombres de Prandtl de 7 4 10. Des solutions numériques montrent que la viscosité variable avec la
température stabilise I’écoulement le long d’une paroi chaude et le déstabilise le long d’une paroi froide.
Le coefficient de dilatation variable avec la température stabilise initialement I'écoulement pour un mur
chaud, mais en aval il le déstabilise. Des visualisations dans I'eau avec tuyau de cuivre isotherme et vertical
(diamétre extérieur 41,3 mm et longueur 1 m) pour différentes combinaisons de températures de paroi et
ambiantes dans le domaine 5-35°C confirment les prédictions numériques.

STABILITAT EINER LAMINAREN NATURLICHEN KONVEKTIONSSTROMUNG

Zusammenfassung—Der EinfluBl der Temperaturabhéngigkeit von Zihigkeit und Volumenausdehnungs-
koeffizient auf die Stabilitit einer laminaren natiirlichen Grenzschichtstromung einer Flilssigkeit
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entlang einer isothermen vertikalen Oberfliche wird mit Hilfe der linearen Stabilitdtstheorie fiir Prandtl-
Zahlen zwischen 7 und 10 untérsucht. Numerische Ldsungen zeigen, daB die temperaturabhingige
Zahigkeit zu einer Stabilisierung entlang einer beheizten Wand fiihrt, wihrend sie entlang einer gekiihlten
Wand destabilisierend wirkt. Der temperaturabhingige Volumenausdehnungskoeffizient fithrt anfangs
zu einer Stabilisierung der Stromung an der beheizten Wand, bei groBerer Lauflinge jedoch wirkt er
destabilisierend. Eine visuelle Untersuchung der Strémung von Wasser an einem isothermen vertikalen
Kupferrohr (AuBendurchmesser 41,3 mm, Linge 1 m) bei verschiedenen Wand- und Wassertemperaturen
im Bereich von 5 bis 35°C bestitigen die numerischen Berechnungen.

BJIUSSHUE TEMIIEPATYPHBIX 3ABUCHUMOCTEN BA3KOCTH M KO3®OULIMEHTA
TETIJIOBOI'O PACIIMPEHUS HA YCTONUYNBOCTL TAMUHAPHOI'O TEUEHUS [MPU
ECTECTBEHHOM KOHBEKLIMH Y W3O0TEPMUYECKOW BEPTUKAJIBHON
TMOBEPXHOCTH

Annoramus—Ha ocHoBe JHHeHHOH TeopHH yCTOWYHMBOCTH mpy 4ucnax Ilpanarns ot 7 mo 10 necneno-
BaHO BJMAHHE TEMNEPATYPHBIX 3aBHCHMOCTEH BA3KOCTH M KO3(UIMEHTA TEIUIOBOTO PACIUMPEHHS Ha
YCTOHYHBOCTD JIAMHHAPHOI'O TEYEHHA KHUIKOCTH B NOTPaHHYHOM CJIOE TIPH €CTECTBEHHOH KOHBEKIHH Y
H30TEPMHYECKOM BEPTHKANBHON NOBEPXHOCTH. M3 YHCIIEHHBIX pellleHHH CIEOYET, 4T0 Y4eT TEMIEPaTyp-
HOM 3aBHCHMOCTH BA3KOCTH NPHBOIMT K CTAOHIM3AIMA TeyeHHs Y HArpeToli MOBEPXHOCTH M K JecTabu-
JM3a0MY Y OXJIAXIEHHON. YueT TeMmnepaTypHOH 3aBHCUMOCTH KO3p(HIMEHTa TEIUIOBOTO PaCIIHpeHHs
JUIS HarpeToi CTeHHl Ha Ha4yajJbHOM YyYacTKe CTaOMIIM3MpYET TeyeHHe, HO 3aTeM (HuXe MO MOTOKY)
nectabwinsupyet ero. Busyanusanus TeyeHHUs B H30TepMHYECKOH BePTHKAJIbHON MenHOM Tpy6e MmHOK
1 M ¥ ¢ HapyXHbIM JHaMeTpoM 41,3 MM IIPH Pa3THYHBIX COYETAHUAX TEMIIEPATYPhI CTEHKH H OKPYXalo-
et cpensl B auanasoe 5-35°C noaTeBepXaaeT YHCIICHHBIE PACYETHI.
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